Midterm Exam

Course Title:	Adv. Numerical Methods	Course Code:	ENGG*6090-S7
Date:	May 25, 2020	Duration:	2 hours

NOT TO BE REMOVED FROM THE EXAMINATION ROOM

Student Name:	
Student ID:	
Instructor:	Dr. Amin Komeili

INSTRUCTIONS TO STUDENTS

- Please write your name, ID\#.
- Students are allowed to use the lecture notes.
- You are required to show a detailed solution. No marks will be given if the answer was not presented logically where all steps lead to the final solution.
- Print your answers clearly. If the marker cannot read the answer, it will be automatically assumed incorrect.
- The invigilators will not answer questions regarding the test paper. If you are unclear about a question on the test paper, state any assumptions that you make and then write your answer clearly.
- Your professionalism and consideration as ethical and responsible engineering students are required in this examination.

Question	(1)	(2)	(3)	(4)	(5)	Total
Points:	15	10	35	25	15	100
Score:						

Question (1)

Solve the system of equations using the Gaussian Elimination method with partial pivoting.

$$
\begin{gathered}
6 x+4 y+13 z=-23 \\
2 x+y-z=4 \\
-3 x+6 y-z=8
\end{gathered}
$$

(This page intentionally left blank.)

Question (2)

Use the Bisection method to find an approximation to the root of $f(x)=e^{-x^{2}}+x \tan x-5$ in the range of $[-5.5,2]$. Continue the iteration until one accurate significant digit is guaranteed. Show your calculation for iteration 0 and 1 .

Itr.	x_{l}	x_{u}	$x_{\text {mean }}$	f_{l}	f_{u}	$f_{\text {mean }}$	$\in \%$
0							
1							
2							
3							
4							
5							
6							
8							
9							
10							
11							

Question (3) Solve the following systems of equation with start point $\left(x_{0}, y_{0}, z_{0}\right)=(1,1,0)$:

$$
\begin{gathered}
y-\cos (x)=0 \\
y=\sqrt{x} \\
x+y-z=0
\end{gathered}
$$

(a) Using the Fixed point iteration up to 4 iterations. (Complete the table.)
(10 Mark)

$g_{1}(x, y, z)=$				
$g_{2}(x, y, z)=$				
$g_{3}(x, y, z)=$				
Iteraion (i)	x_{i}	y_{i}	z_{i}	$\left\|\epsilon_{x}\right\| \%$
0	1	1	0	-
1				
2				
3				
4				

(b) If your solution did not converge, what could be the reasons? Support your answer with calculations.
(10 Marks)
(c) Using the Newton Raphson method. Continue the iteration until error for x is less than $\mathbf{5 \%}$. (Complete the table.)

Table 1-detailed solution for iteration 1

	[Jacobian] $\left\{\Delta x_{i}\right\}=\left[b_{i}(x, y, z)\right]$
Jacobian $(x, y, z)=$	
Jacobian $(1,1,0)=$	
$\left[b_{0}(1,1,0)\right]=$	
$\left\{\begin{array}{l}x_{1} \\ y_{1} \\ z_{1}\end{array}\right\}=$	

Iteraion (i)	x_{i}	y_{i}	z_{i}	$\epsilon_{x} \%$
0	1	1	0	-
1				
2				
3				
4				

(This page intentionally left blank.)

Question (4) The following table lists values of the $\sin (\mathrm{X})$ at various points.

X	0.0	0.1	0.3	0.7	0.8	0.9	1.3	1.9	2.2
$\operatorname{Sin}(\mathrm{x})$	0.0	0.099833	0.29552	0.644218	0.717356	0.783327	0.963558	0.94630	0.808496

(a) determine the interpolation function at $\mathrm{x}=0.85$, using a third-order polynomial function from the Newton divided-difference method.
(b) Calculate the $\sin (0.85)$ using the interpolation function you obtained in part (a) and determine the relative true error.
(5 Marks)
(This page intentionally left blank.)

Question (5) The velocity of a car is measured at different times. An exponential regression curve is going to be used to estimate the velocity of the car.

$\mathrm{t}(\mathrm{s})$	$\mathrm{V}(\mathrm{m} / \mathrm{s})$
0	2
0.1	2.5
0.2	4
0.3	5
0.4	6
0.5	9
0.7	16

(a) Transfer the data to the logarithm basis and determine the regression line $y^{*}=a t+b$. ($\mathbf{1 3}$ marks)

t	V						
0	2						
0.1	2.5						
0.2	4						
0.3	5						
0.4	6						
0.5	9						
0.7	16						

(b) Estimate the velocity of the car at $\mathrm{t}=1 \mathrm{~s}$.
(This page intentionally left blank.)

