Midterm Exam

Course Title:	Adv. Numerical Methods	Course Code:	ENGG*6090-S7
Date:	May 25, 2020	Duration:	2 hours

NOT TO BE REMOVED FROM THE EXAMINATION ROOM

Student Name:	
Student ID:	
Instructor:	Dr. Amin Komeili

INSTRUCTIONS TO STUDENTS

- Please write your name, ID#.
- Students are allowed to use the lecture notes.
- You are required to show a detailed solution. No marks will be given if the answer was not presented logically where all steps lead to the final solution.
- Print your answers clearly. If the marker cannot read the answer, it will be automatically assumed incorrect.
- The invigilators will not answer questions regarding the test paper. If you are unclear about a question on the test paper, state any assumptions that you make and then write your answer clearly.
- Your professionalism and consideration as ethical and responsible engineering students are required in this examination.

Question	(1)	(2)	(3)	(4)	(5)	Total
Points:	15	10	35	25	15	100
Score:						

Question (1)

(15 marks)

Solve the system of equations using the Gaussian Elimination method with <u>partial pivoting</u>.

$$6x + 4y + 13z = -23$$
$$2x + y - z = 4$$
$$-3x + 6y - z = 8$$

Question (2)

(10 marks)

Use the Bisection method to find an approximation to the root of $f(x) = e^{-x^2} + xtanx - 5$ in the range of [-5.5, 2]. Continue the iteration until **one accurate significant digit** is guaranteed. Show your calculation for iteration 0 and 1.

Itr.	x_l	x _u	x _{mean}	f_l	f _u	f _{mean}	∈ %
0							
1							
2							
3							
4							
5							
6							
8							
9							
10							
11							

Question (3) Solve the following systems of equation with start point $(x_0, y_0, z_0) = (1,1,0)$:

$$y - \cos(x) = 0$$
$$y = \sqrt{x}$$
$$x + y - z = 0$$

	e Fixed point iterati	on up to 4 iteration	s. (Complete the tabl	e.) (10 Mark)
$g_1(x,y,z) =$				
$g_2(x, y, z) =$				
$g_2(x,y,z) =$				
$g_3(x,y,z) =$				
Iteraion (i)	x _i	γ_i	z_i	$ \epsilon_x \%$
0	1	1	0	-
1				
2				
3				
4				

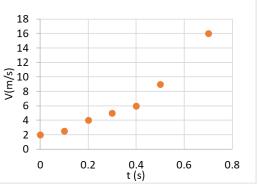
(b) If your solution did not converge, what could be the reasons? Support your answer with calculations. (10 Marks)

(c) Using the Newton Raphson method. Continue the iteration until error for x is less than 5%.
 (Complete the table.) (15 Marks)

 Table 1-detailed solution for iteration 1
 1

	$[Jacobian]{\Delta x_i} = [b_i(x, y, z)]$
Jacobian(x, y, z) =	
Jacobian ₀ (1,1,0) =	
[<i>b</i> ₀ (1,1,0)] =	
$\begin{cases} x_1 \\ y_1 \\ z_1 \end{cases} =$	

Iteraion (i)	x _i	y_i	Zi	\in_{x} %
0	1	1	0	-
1				
2				
3				
4				


Question (4)	The following table lists values of the sin(X) at various points.
--------------	---

X	0.0	0.1	0.3	0.7	0.8	0.9	1.3	1.9	2.2
Sin(x)	0.0	0.099833	0.29552	0.644218	0.717356	0.783327	0.963558	0.94630	0.808496

- (a) determine the interpolation function at x=0.85, using a **third-order** polynomial function from the Newton divided-difference method. (20 Marks)
- (b) Calculate the *sin*(0.85) using the interpolation function you obtained in part (a) and determine the **relative true error**. **(5 Marks)**

Question (5) The velocity of a car is measured at different times. An exponential regression curve is going to be used to estimate the velocity of the car.

t (s)	V (m/s)
0	2
0.1	2.5
0.2	4
0.3	5
0.4	6
0.5	9
0.7	16

(a) Transfer the data to the logarithm basis and determine the regression line $y^* = at + b$. (13 marks)

t	V			
0	2			
0.1	2.5			
0.2	4			
0.3	5			
0.4	6			
0.5	9			
0.7	16			

Σ

(b) Estimate the velocity of the car at t=1s.

(2 marks)