

ENG6090-S7 – Advanced Numerical Methods for Engineers

Term Project – 2-D Groundwater Flow using MATLAB

Brayden McNeill (student ID: 1156780)

June 23rd, 2020

1.0 Introduction
This report describes the laws and principles which form the basis for groundwater modeling,

and the process undertaken to develop a simple 2-dimensional groundwater modeling

application using MATLAB (‘the MATLAB code’).

Groundwater modeling is the process of describing or predicting the movement of water through

the ground using a mathematical analog to the real-world. Hydrogeologists have used

groundwater modeling as a tool in a variety of applications ever since the late 1970s. Any scenario

in which a hydrogeologist or engineer is required to manage groundwater can benefit from the

use of a groundwater model as a way of validating engineered designs. From a water quantity

standpoint, groundwater models may be used to determine if a city/province/nation will have

enough water for residential or industrial supply purposes based on projected increases in

demand, or groundwater models may be used to predict impacts on natural hydrologic features

due to any increases in extraction (e.g. if a water supply well is pumped at larger than normal

capacity will it have a negative impact on a nearby stream). Groundwater models are also

important tools in the characterization and assessment of groundwater contaminant issues. For

example, if a chemical spill occurs you may use groundwater modeling to estimate the time it will

take for the chemical plume to intercept some target location such as a stream or water supply

well. A groundwater model may also be used to design and evaluate the effectiveness of

groundwater remediation systems.

Numerical models are particularly helpful in the field of hydrogeology since there is always

significant uncertainty regarding the subsurface environment. Aquifers (i.e. the soil units through

which water flows) are usually highly heterogeneous and don’t lend themselves particularly well

to analytical solutions. There is considerable uncertainty regarding the character of the

subsurface environment (i.e. distribution of soil types/parameters), the physical processes which

are at play in the subsurface (i.e. is flow occurring through macropores in the soil), and the

temporal nature of the system (e.g. how to characterize precipitation as a long-term average or

discrete events). Since the inputs/processes within a groundwater flow system are typically

heterogeneous and difficult to characterize (since the system is not directly observable) they are

difficult systems to model. Even if the groundwater flow system were perfectly characterized,

the heterogeneity of these systems means that most analytical solutions – which typically assume

that the system is homogeneous – are inherently flawed. The use of numerical models allows

hydrogeologists to test these systems under many different conditions and determine the most

suitable parameterization of the system based on observational data (i.e. physical measurements

of groundwater elevations, stream fluxes, etc.).

Commercial groundwater models today allow the user to construct highly elaborate and complex

groundwater models with irregularly shaped model domains, several different boundary

condition types to emulate dozens of real-world hydrologic features, and highly parameterized

model domains with dozens of different parameters and levels of heterogeneity. Commercial

groundwater applications also offer several different solution techniques, including solutions

based on the finite difference methodology, finite volume methodology and the finite element

analysis. The code described in this report is much simpler than today’s commercial groundwater

modeling applications. Nevertheless, the MATLAB code presented here is based on the same

fundamentals principles and is based on the finite different solution technique.

This report includes a brief introduction to the fundamental principles of groundwater modeling

in the ‘Problem Statement’ and ‘Governing Equations’ sections. The finite difference solution

technique used to solve the governing equations for groundwater flow is presented in the

‘Solution Using Finite Difference Method’ section. Since the MATLAB code is relatively simple and

is only applicable to a narrow range of situations, assumptions and limitations inherent to the

MATLAB code are discussed in the ‘Assumptions’ section. The ‘Building the MATLAB Code’

section describes the overall structure of the MATLAB code and describes how the finite

difference solution was applied in MATLAB. Finally, the overall accuracy of the MATLAB code is

evaluated in the ‘Benchmark Testing and Sources of Error’ section. And of course, the

‘Conclusion’ section reviews the major findings associated with this project and highlights

potential improvements to the code that could make it suitable in different settings.

2.0 Problem Statement
The primary problem statement when solving a groundwater modeling problem is always the

same: to calculate or solve for the groundwater elevation (or head) throughout the model

domain. Once the groundwater elevation is known several other helpful pieces of information

can then be calculated. For example, knowing groundwater elevations between two points would

allow a hydrogeologist to calculate the groundwater velocity and flux between the two points. A

well-defined groundwater flow regime is also required to solve subsequent contaminant

transport problems, and as such all contaminant transport models begin with the primary

problem statement of solving the groundwater elevations through the model domain.

The problem statement for the MATLAB code is also to calculate the heads or groundwater

elevations throughout the model domain. However, unlike commercial groundwater models the

MATLAB code presented here has a fixed conceptual model domain, with fixed boundary

condition types and locations.

The conceptual model for the MATLAB code is displayed in Figure 1, which is a plan view of the

model domain. From the image it is seen that the conceptual model of the code is based on a

rectangular model domain. The user of the MATLAB code can specify the minimum and maximum

coordinates of the model domain in both the X and Y direction, allowing the code to calculate the

total model length and width. The user can also specify the total number of rows and columns,

which allows the code to determine the size of each model cell in the X- and Y-direction (i.e. Δx

and Δy respectively).

The conceptual model for the MATLAB code also incorporates two distinct boundary condition

types which are applied in three ways. Firstly, the upper and lower model boundaries (highlighted

with a thick red line in Figure 1) are represented by Type 2/Neumann boundary conditions, or

specified flux. These Type 2 boundaries are specifically meant to represent ‘zero-flow’ boundaries

and are hard-coded into the MATLAB code. In other words, the user is not able to alter the

magnitude of the boundaries represented by the thick red lines. Type 2 boundary conditions may

also be applied to all ‘inner’ cells in the model domain, or in other words the cells indicated with

a green dot in Figure 1. These green dots indicate a user-specified flux which can conceptualized

as precipitation which is infiltrating into the ground and recharging the groundwater. Finally, the

cells in the first and last column of the model domain are represented by Type 1/Dirichlet

boundary conditions where a groundwater elevation or head is specified by the user. Since water

flows from areas of high energy potential to low energy potential (with the total energy potential

being a sum of gravitational/elevation and pressure energy), the relative difference in elevation

between these two boundary locations will be the primary driver of groundwater flow in the

model domain.

Figure 1: Conceptual Model for the MATLAB Code

Now that the general nature of the problem and the conceptualization of the model domain are

understood the governing equations for groundwater flow must be considered. These governing

equations are relatively simple and are discussed in the next section.

3.0 Governing Equations
The governing equation for 2-dimensional groundwater flow is a simple combination of the

principle of conservation of mass and the foundational law of hydrogeology – Darcy’s Law

(Anderson & Woessner, 1991); . First let’s consider Darcy’s Law, which is shown in equation 1

below:

𝑄 = 𝐾 ∗ 𝑖 ∗ 𝐴 (1)

where Q [L3/T] represents the volumetric flux of water through a cross-sectional area

 K [L/T] is the hydraulic conductivity a parameter which described a porous medias ability

to transmit a fluid, or in the case of groundwater modeling the ability of a soil to transmit

water

 i [unitless] represents the hydraulic gradient (can be rewritten as
𝜕ℎ

𝜕𝑥
)

 A [L2] represents the cross-sectional area of flow

Darcy’s law calculates the flow of a fluid (typically water) through a porous medium (e.g. soil).

From equation 1 the overall flow of water is a product of the hydraulic gradient, hydraulic

conductivity and the cross-sectional area of flow. The hydraulic conductivity is a parameter of

the soil itself and represents the soils ability to transmit water. The other important component

of Darcy’s law is the hydraulic gradient. As with electricity, water will always flow from an area

of high potential energy to an area of low potential energy. In the case of water, the potential

energy is known as the potentiometric surface, and in unconfined aquifers (i.e. a water-bearing

soil unit which is in contact with atmospheric pressure) is simply represented by the elevation of

the water table. Or in other words, the hydraulic gradient can be thought of as the change in

groundwater elevation (𝜕ℎ) over some distance (𝜕𝑥)

The other fundamental equation for groundwater modeling is the principle of mass conservation.

If we consider a control volume, the principle of mass conservation states that the difference

between the mass entering and leaving the control volume is equal to the change in mass stored

within the control volume. In mathematical terms, the concept of mass conservation is expressed

as shown below in equation 2:

(𝑀𝑎𝑠𝑠 𝐼𝑛) − (𝑀𝑎𝑠𝑠 𝑂𝑢𝑡) = (𝐶ℎ𝑎𝑛𝑔𝑒 𝑖𝑛 𝑚𝑎𝑠𝑠 𝑠𝑡𝑜𝑟𝑒𝑑) (2)

To arrive at the overall governing equation simply expand the terms in equation 2 in terms of

Darcy’s law, resulting in equation 3 below:

𝐾𝑥
𝜕2ℎ

𝜕𝑥2 + 𝐾𝑦
𝜕2ℎ

𝜕𝑦2 + 𝑊 = 𝑆𝑠
𝜕ℎ

𝜕𝑡
 (3)

where Kx and Ky [L/T] represent the hydraulic conductivity of the soil in the X-axis and Y-axis,

respectively

Ss [unitless] represents the specific storage, a parameter which describes the volume of

water released (or added) to aquifer storage based on a unit decline (or increase) in

hydraulic head
𝝏𝒉

𝝏𝒕
 [L/T] represents a change in hydraulic head over time

W [L3/T] represents any additional volumetric fluxes (sinks/sources) within the control

volume

Simply put, the first and second terms in equation 3 represent the sum of flow in the X-axis and

Y-axis, respectively, the W represents any additional fluxes of water which are not attributed to

base flow (e.g. if a groundwater supply well is pumping water out of the aquifer, or inflow from

precipitation) and the terms on the right represent the change in water stored in the aquifer over

some time. Please note that the cross-sectional area term which was included in Darcy’s Law

(equation 1) is not explicitly included in equation 3. However, it will reappear when the problem

is expressed in terms of a finite difference solution (see section 4.0)

Equation 3 is therefore the principle equation which describes groundwater flow in 2-dimensions

and is the equation that must be solved in groundwater modeling problems (Anderson &

Woessner, 1991). As a partial differential equation, the equations for groundwater flow in 1-, 2-

or 3-dimensions lend themselves well to a solution using finite difference methods and is the

solution method used in the MATLAB code presented in this report. The following section

describes the finite difference solution methodology for equation 3.

4.0 Solution Using Finite Difference Method
Frind (2003) provides a detailed description of how to solve equation 3 using the finite difference

methodology and was an essential source of guidance during this project. The user manual to

MODFLOW-2005 (a widely used groundwater modeling code) also provided valuable insight as

to how groundwater modeling applications typically work (Harbaugh, 2005).

To apply the finite difference solution method, the partial differential equation from the previous

section (i.e. equation 3) must be re-written in an algebraic or discretized format. If an elemental

control volume is considered, the flow across each interface of the control volume can be

rewritten in terms of Darcy’s law, as shown in Figure 2 below:

Figure 2: Control Volume and Expressions for Groundwater Flow in Each Direction

In Figure 2 the flow across each cell interface is expressed in terms of the hydraulic conductivity

in the direction of flow (i.e. Kx and Ky; note that some soils are anisotropic and will favour flow

in one axis), the cross-sectional area of flow (i.e. Δx and Δy for flow along the X-axis and Y-axis,

respectively) and the change in hydraulic gradient across the cell interface (i.e. the change in

hydraulic head over some distance Δx or Δy).

If flow through the cell is generally to the left and down, we can say that water is leaving the cell

on the left-interface and bottom-interface, which is why a negative symbol precedes those terms.

These would represent the ‘Mass Out’ term in equation 2. Similarly, flow across the right-

interface and top-interface would represent the ‘Mass In’ term in equation 2. Therefore,

combining these terms together and rewriting the mass conservation equation gives equation 4

below, which is the overall governing equation for groundwater flow in 2-dimensions:

−𝐾𝑥∆𝑦
ℎ𝑖,𝑗−ℎ𝑖−1,𝑗

∆𝑥
− 𝐾𝑦∆𝑥

ℎ𝑖,𝑗−ℎ𝑖,𝑗−1

∆𝑦
+ 𝐾𝑦∆𝑥

ℎ𝑖,𝑗+1−ℎ𝑖,𝑗

∆𝑦
+ 𝐾𝑥∆𝑦

ℎ𝑖+1,𝑗−ℎ𝑖,𝑗

∆𝑥
+ 𝑊 = 𝑆𝑠

𝜕ℎ

𝜕𝑡
 (4)

where Kx and Ky [L/T] represent the hydraulic conductivity of the soil in the X-axis and Y-axis,

respectively

 Δx and Δy [L] represent the cross-sectional area of flow in the X-axis and Y-axis,

respectively

 hi,j [L] represents the hydraulic head of the current cell

i and j [-] are cell-indexing values in the X-axis and Y-axis respectively, used to generalize

the equation instead of writing ‘left’, ‘right’, ‘up’, ‘down’

Ss [unitless] represents the specific storage, a parameter which describes the volume of

water released (or added) to aquifer storage based on a unit decline (or increase) in

hydraulic head
𝝏𝒉

𝝏𝒕
 [L/T] represents a change in hydraulic head over time

W [L3/T] represents any additional volumetric fluxes (sinks/sources) within the control

volume

Equation 4 can be rearranged to give equation 5 below:

𝐾𝑥∆𝑦 (
ℎ𝑖−1,𝑗−2ℎ𝑖,𝑗+ℎ𝑖+1,𝑗

∆𝑥2) + 𝐾𝑦∆𝑥 (
ℎ𝑖,𝑗−1−2ℎ𝑖,𝑗+ℎ𝑖,𝑗+1

∆𝑦2) + 𝑊 = 𝑆𝑠
𝜕ℎ

𝜕𝑡
 (5)

We can see that equation 5 is simply equation 3 rewritten with an approximation for the 2nd

differential terms in the X- and Y-direction, and with cross-sectional area terms included.

In the MATLAB code presented here, equation 4 is further simplified by assuming that the

solution will be steady state. As such, the terms on the right-hand side of the equation are equal

to zero, resulting in equation 6 (note: the sources/sink term W has been moved to the right-hand

side):

−𝐾𝑥∆𝑦
ℎ𝑖,𝑗−ℎ𝑖−1,𝑗

∆𝑥
− 𝐾𝑦∆𝑥

ℎ𝑖,𝑗−ℎ𝑖,𝑗−1

∆𝑦
+ 𝐾𝑦∆𝑥

ℎ𝑖,𝑗+1−ℎ𝑖,𝑗

∆𝑦
+ 𝐾𝑥∆𝑦

ℎ𝑖+1,𝑗−ℎ𝑖,𝑗

∆𝑥
= 𝑊 (6)

The next step in the finite difference solution is to discretize the model domain, which is easily

accomplished by specifying the model size in the X- and Y-directions, and the total number of

rows and columns. In other words, consider the model domain as a series of ‘cells’ which are

treated in the same way as the elemental control volume mentioned at the beginning of the

section. This allows the discrete terms Δx and Δy to be calculated using equations 7 and 8 below:

∆𝑥 =
𝑋𝑚𝑎𝑥−𝑋𝑚𝑖𝑛

𝑜𝑓 𝑐𝑜𝑙𝑢𝑚𝑛𝑠
 (7)

∆𝑦 =
𝑌𝑚𝑎𝑥−𝑌𝑚𝑖𝑛

𝑜𝑓 𝑟𝑜𝑤𝑠
 (8)

Please note that equation 6 includes 5 unknown terms: the heads in the current cell and all

neighboring cells. Of course, a single equation with 5 unknowns is not solvable. However,

equation 6 is applied to all cells within the model domain. Furthermore, boundary conditions are

applied to all cells on the exterior of the model domain, either as known heads (type 1 boundary)

or known fluxes (type 2 boundary). Therefore, as the system of equations is expanded across the

model domain the result is a system of n-equations with n-unknowns, for a system with n-cells.

Boundary conditions will be revisited later in this section.

Once the model domain is discretized the system of equations must be re-written in matrix

format [A]*[x]=[b], where [x] is a matrix which represents all unknown values (or heads in each

cell), [A] represents the coefficient matrix, and [b] represents all known values. In the case of the

groundwater modeling problem it may be easier to consider the system of equations as follows:

[𝐶𝑜𝑛𝑑𝑢𝑐𝑡𝑎𝑛𝑐𝑒 𝑀𝑎𝑡𝑟𝑖𝑥] ∗ [𝐻𝑒𝑎𝑑𝑠 𝑀𝑎𝑡𝑟𝑖𝑥] = [𝐾𝑛𝑜𝑤𝑛 𝑉𝑎𝑙𝑢𝑒𝑠] (9)

In equation 9, the [Conductance Matrix] contains all the coefficients which are multiplied with

the unknown head terms. Referring to equation 6 we can see that all terms which describe flow

to neighboring cells in the X-direction (left and right, or i-1 and i+1 respectively) have the

following coefficient term a, as shown in equation 10:

𝑎 =
𝐾𝑥∗∆𝑦

∆𝑥
 (10)

Similarly, in equation 6 all terms which describe flow to neighboring cells in the Y-direction (above

and below, or j+1 and j-1 respectively) have the following coefficient term b, as shown in equation

11:

𝑏 =
𝐾𝑦∗∆𝑥

∆𝑦
 (11)

And finally, all terms on the left-hand side of equation 6 have a term which describes flow to/from

the current cell, or in other words all terms contain a value for head in the current cell. As such,

we can define a coefficient d for head in the current cell as shown in equation 12:

 𝑑 = 2(𝑎 + 𝑏) (12)

Figure 3 illustrates the coefficients applicable to the current and neighboring cells for an interior

cell.

Figure 3: Conductance Coefficient Template for Interior Cell (adapted from Frind, 2003)

Please note that the conductance template shown in Figure 3 does not apply to cells along the

top and bottom row of the model domain. Referring to Figure 1 we can see that a type 2 boundary

condition (‘no-flow’) is applied to the upper and lower edge of the model domain. As such, the

conductance template for cells along the top and bottom row must be altered. Figure 4 illustrates

the conductance template for a cell along the bottom row of the model domain, where qb

represents the magnitude of the applied flux (note: the magnitude qb for the upper and lower

boundary of the model domain is 0, and therefore nothing is added to the right hand side (RHS)

of the matrix equation).

Figure 4: Conductance Coefficient Template for Interior Cell (adapted from Frind, 2003)

In equation 9, the [Heads Matrix] would contain all unknown head values throughout the model

domain. Since the heads in the first and last column of the model domain are defined in this

MATLAB code these would not be included in the [Heads Matrix]. Therefore, for a model domain

with n rows and m columns there would be n*(m-2) unknown head values.

Finally, the right-hand side of equation 9 contains all known values. In the conceptual model for

this MATLAB code (Figure 1) there are two sources of know values: the defined head values in

the first and last column of the model domain (i.e. the type 1 boundary conditions), and the

defined values for the ‘recharge’ boundary condition (i.e. the type 2 boundary conditions for

interior cells).

Each model cell containing a defined head (type 1) boundary condition will have exactly 1

neighboring cell with an unknown head (i.e. the interior cell to the right or left of the type 1

boundary). As such, the defined head value is multiplied by the a-coefficient (equation 10) and is

moved to the right-hand side of equation 9, with the index within the [Known Values] matrix

corresponding to the index of the neighboring cell within the [Heads Matrix].

With respect to the type 2/recharge boundary condition, the defined recharge rate ([L/T]) is

multiplied by the interfacial area of flow (i.e. the area of the cell, Δx*Δy) to achieve a flux term

with units [L3/T], and is moved to the right-hand side of equation 9, with the index within the

[Known Values] matrix corresponding to the index of the neighboring cell within the [Unknown

Heads] matrix.

Please note that the details regarding the construction of the [Conductance Matrix], [Heads

Matrix] and [Known Values] matrices will be revisited in greater detail in section 6.0.

Once the system of equations has been successfully constructed it can be solved using any

method typically used to solve systems of linear equations. The MATLAB code presented in this

report is based on the Gauss-Seidel method, and further details are provided in section 5.0.

5.0 Reviewing the MATLAB Code
With an understanding of the governing equation for groundwater flow and the general

methodology for the finite difference solution it is possible to apply these concepts in MATLAB.

This section of the report introduces the 2-dimensional groundwater modeling MATLAB code and

discusses how it functions. Section 5.1 introduces the user interface and how the application can

be used, whereas section 5.2 focuses on the structure of the code and the callback function when

the ‘Run’ button is clicked.

5.1 User Interface
The user interface for the groundwater modeling application is shown in Figure 5. The user

interface includes three different panels which require user input before the code can be run,

and two panels which display results. A list of instructions are also included at the top of the

interface to help guide a new user. Also please note that tooltips are included for most fields, so

new users can simply scroll the computer mouse over each field to learn more.

The first user-input fields appear under the ‘Define Model Domain’ panel. The fields within this

panel allow the user to specify the overall size of the model domain in the X-axis using the ‘Xmin’

and ‘Xmax’ fields, and the overall size of the model domain in the Y-axis using the ‘Ymin’ and

‘Ymax’ fields. The user must also specify the total number of rows and columns using the ‘# of

Columns’ and ‘# of Rows’ fields. Please note that the minimum value for the # rows/columns

fields is set to 5. This minimum value is required in order for the code to function properly, and

also has the added benefit of ensuring a certain level of refinement in the model domain. The

user can click the ‘Calculate dX and dY’ button to populate the ‘dX’ and ‘dY’ fields, which indicate

the width/length of the resulting cells using equations 13 and 14, respectively.

𝑑𝑋 = ∆𝑥 =
𝑋𝑚𝑎𝑥−𝑋𝑚𝑖𝑛

𝑜𝑓 𝐶𝑜𝑙𝑢𝑚𝑛𝑠
 (13)

𝑑𝑌 = ∆𝑦 =
𝑌𝑚𝑎𝑥−𝑌𝑚𝑖𝑛

𝑜𝑓 𝑅𝑜𝑤𝑠
 (14)

Please note that it isn’t necessary for the user to click the ‘Calculate dX and dY’ button for the

code to function properly. However, to numerical error is minimized when dX=dY and therefore

a button to check the resulting dX and dY is provided to help the user with the grid design.

Finally, a ‘Model Depth’ field is included as well. Please note that this field is not actually used to

solve the 2-dimensional groundwater modeling problem. This field is used primarily to calculate

the volumetric flux results which appear in the ‘Cell-Specific Results’ section. These results will be

discussed later in this section. It is important to highlight the presence of this user input field

because without prior knowledge it does give the impression that this is a 3-dimensional model

domain.

The second batch of user input fields appear in the ‘Define Model Parameters/Boundary

Conditions’ panel. Under the section for ‘Parameters’ are fields for Kx and Ky, which are the

hydraulic conductivities of the modeled soil material in the X- and Y-directions respectively. Kx

and Ky must both be positive numbers. A third user input field for ‘Neff’ is also included. ‘Neff’

stands for effective porosity, which is a property of the soil material with a value between 0 and

1. The effective porosity is essentially a measure of the open space within a unit of soil, and

represents the amount of soil volume which is available for water to flow through (water flows

through pores in the soil, not through the soil particles themselves). As with the ‘Model Depth’

parameter, ‘Neff’ is not a required parameter for the solution of the groundwater model itself,

but is rather used to calculate the groundwater velocities which appear in the ‘Cell Specific

Results’ panel, and will be discussed later in this section.

Figure 5: User Interface for the 2-Dimensional Groundwater Flow Application

The ‘Define Model Parameters/Boundary Conditions’ panel also includes input fields for the

boundary conditions discussed in previous sections (note: the type 2/no-flow boundary

conditions at the upper and lower model boundary are fixed and have a magnitude of 0 by

definition, therefore these boundaries are not editable). Three input fields are available,

including a volumetric flux for recharge/precipitation (i.e. the ‘RCH’ field which represents the

type 2 boundaries illustrated with green dots in Figure 1), and two input fields for the type

1/constant head boundary conditions in row 1 (i.e. the ‘CHL’ or ‘Constant Head Left’) and in the

last row (i.e. the ‘CHR’ or ‘Constant Head Right’). A positive ‘RCH’ value is typical and would

indicate an influx of water from precipitation. However, it is possible to enter a negative value

which could be conceptualized as evapotranspiration losses to the atmosphere. Any values can

be entered for ‘CHR’ and ‘CHL’, and it is the difference in magnitude between these two

boundaries which will be the primary driver of groundwater flow in the model.

Finally, two user-input fields appear under the ‘Model Run Parameters’ panel, ‘Error Threshold’

and ‘Maximum # of Iterations’. Of course the ‘Error Threshold’ field indicates the level of

accuracy required from the solution before it is considered ‘solved’, while the ‘Maximum # of

Iterations’ field allows the code to terminate in cases where the solution is not converging

quickly. A warning message will appear if the maximum number of iterations is reached, and the

results for the current iteration will be displayed anyway. An example of this warning is shown in

Figure 6.

Figure 6: Warning Message Displayed if Maximum # of Iterations is Reached

Once all user input fields have been specified as desired by the user, click the ‘Run’ button under

the ‘Model Run Parameters’ panel to run the code and solve the groundwater flow problem. The

code should typically execute successfully, and the results will then be displayed in the ‘Resulting

GW Surface’ graph and the ‘Cell-Specific Results’ panel.

The primary results of the groundwater modeling code (i.e. a single groundwater elevation value

for each model cell) is displayed as a 3-dimensional mesh under the ‘Resulting GW Surface’ graph

at the bottom right of the user interface.

Additional cell-specific results are displayed on the bottom left. The user must specify which

specific cell to display the results for using the ‘Row #’ and ‘Column #’ fields. If the user specifies

a row or column which is outside the range of the model a warning message is displayed

indicating the error and no results will be displayed (Figure 7). The user must also specify a period

of time over which to calculate these results using the ‘Time Step’ field. While the solution is

steady-state and therefore time-independent, a particular time period is required in order to

calculate volumetric fluxes. The default time step is set to 1 day.

Cell-specific information includes the following:

• Head – the calculated groundwater elevation at the desired cell

• Drawdown – the difference between the initial head and calculated head at the desired

cell

o Note: initial head is the average of CHL and CHR

• Groundwater Velocity in X- and Y-direction – indicates the velocity of groundwater flow

in each direction at the desired cell

• Volumetric Flux in X- and Y-direction – indicates the volume of water passing through

the cell in each direction over a specified time period (i.e. ‘time step’)

• Volumetrix flux from recharge – indicates the volume of water which entered the cell

from the recharge boundary condition over a specified time period (i.e. ‘time step’)

The equations used to calculate groundwater velocities (equation 15), baseflow fluxes (equation

16) and fluxes from recharge (equation 17) are included below. Please note that equation 15 and

16 are shown for the X-direction, equations for the Y-direction are very similar:

𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦𝑋 =
1

2
∗ (

𝐾𝑥(𝐻𝑒𝑎𝑑 𝐶𝑢𝑟𝑟𝑒𝑛𝑡−𝐻𝑒𝑎𝑑 𝐷𝑜𝑤𝑛𝑠𝑡𝑟𝑒𝑎𝑚)

∆𝑥

𝑁𝑒𝑓𝑓
+

𝐾𝑥(𝐻𝑒𝑎𝑑 𝑈𝑝𝑠𝑡𝑟𝑒𝑎𝑚−𝐻𝑒𝑎𝑑 𝐶𝑢𝑟𝑟𝑒𝑛𝑡)

∆𝑥

𝑁𝑒𝑓𝑓
) (15)

𝑉𝑜𝑙𝑢𝑚𝑒𝑡𝑟𝑖𝑐 𝐹𝑙𝑢𝑥𝑋 = 𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦𝑋 ∗ ∆𝑦 ∗ 𝑀𝑜𝑑𝑒𝑙 𝐷𝑒𝑝𝑡ℎ ∗ 𝑇𝑖𝑚𝑒𝑆𝑡𝑒𝑝 (16)

𝑅𝑒𝑐ℎ𝑎𝑟𝑔𝑒 𝐹𝑙𝑢𝑥 = 𝑅𝐶𝐻 ∗ 0.001 ∗ ∆𝑥 ∗ ∆𝑦 ∗ 𝑇𝑖𝑚𝑒𝑆𝑡𝑒𝑝 (17)

Figure 7: Warning Message Displayed when Specified Cell is Outside Range of Model

This concludes the review of the user interface for the 2-dimensional groundwater modeling

code. In the next section the ‘Run’ button callback function is discussed in detail.

5.2 Run Button Callback Function
The most important code with respect to the 2-dimensional groundwater modeling application

is contained within the callback function when the ‘Run’ button is pressed by the user. This

section of the code is approximately 300 lines long. In this section of the report the ‘Run’ button

functionality will be discussed in detail, but please note that this section of the code does include

considerable annotation which should make it possible for any user to review and understand

the solution procedure.

The procedure has five general steps, each of which is discussed in further detail in the

subsections to follow. The six steps are:

1. Initialize Variables

2. Assemble the [Conductance Matrix]

3. Assemble the [Known Values Matrix]

4. Solve using Gauss-Seidel Method

5. Organize and Display the Results

5.2.1 Initializing Variables (Lines 108-166)

The first section of the code is quite simply to initialize all necessary variables and to retrieve or

calculate the variables based on the user-input fields. Most variables are simply based on user-

input fields, but the dX and dY variables (which correspond to Δx and Δy, respectively) are

calculated using equations 13 and 14 from section 5.1. The values for dX and dY are also

displayed in the related user-input fields, in case the user hasn’t already used the ‘Calculate dX

and dY’ button.

5.2.2 Assemble the Conductance Matrix (Lines 168-292)

`As discussed in section 4.0, the finite difference solution requires the system of equations to be

in the form [A]*[x]=[b], where matrix [A] contains the coefficients for unknown variables [x]. In

the context of the groundwater modeling problem, matrix [A] is called the [Conductance Matrix]

and it contains a coefficients a, b and d which were introduced in section 4.0. Please note that in

the MATLAB code this matrix is called ‘GlobalM’.

As such, the first task in this section of the code is to calculate the values for coefficients a, b and

d using equations 10, 11 and 12 above (Lines 168-173).

The second task is to create an empty matrix of the correct size (Lines 186-187). The

[Conductance Matrix] must be a square two-dimensional matrix, with the total number of

rows/columns being the same as the total number of unknown head values within the model

domain. Recall that heads are defined for the first and last column, and as such the [Conductance

Matrix] the number of rows and columns in the matrix can be calculated using equation 18:

𝑜𝑓 𝑈𝑛𝑘𝑛𝑜𝑤𝑛𝑠 = (#𝑅𝑜𝑤𝑠) ∗ (#𝐶𝑜𝑙𝑢𝑚𝑛𝑠 − 2) (18)

Once the empty [Conductance Matrix] is initialized the next task is to populate it with the

coefficients previously calculated. This task is somewhat complicated since there are multiple

cells throughout the model domain which require special considerations. The simplest cells are

those interior cells which are at least 1 row/column removed from the edges of the model

domain, since these have four neighboring cells (see Figure 3). However, all four corner cells are

unique within the scheme of the model domain, since they each have different neighbors (for

example, the cell at the top-left of the model domain has a neighbor to the right and below,

whereas the cell at the bottom-right corner has a neighbor to the left and above). Cells in the

second and second last columns (not counting corner cells) are also unique, since they border on

a type 1 boundary condition. Furthermore, cells in the first and last rows (not counting corner

cells) are also unique since they border on a type 2 boundary condition.

With these complications in mind, lines 189-292 of the code populate the [Conductance Matrix]

with the desired coefficients. The code begins by entering the required coefficients for the corner

cells (lines 200-230), followed by a series of five ‘for loops’ which enter the remaining coefficients

for the second column (lines 232-242), then the second last column (lines 244-254), then the

first/bottom row (line 256-266), then the last/top row (line 268-278) and finally all remaining

interior cells (line 280-292).

The result is a diagonally dominant, symmetric, pentadiagonal matrix. An example [Conductance

Matrix] for a model with five rows and columns is shown in Figure 8. Note the banded nature of

the matrix, with all d-coefficients appearing on the diagonal, offset by bands of b- and a-

coefficients for corresponding neighbor cells. Entries on the diagonal which are highlighted in

yellow indicate cells bordering a type 2 boundary (i.e. corner cells, or cells in the top/bottom

row). In these cases, a different template must be used for the conductance terms (see Figures 3

and 4 from section 4.0).

Figure 8: Example [Conductance Matrix] for a 5x5 Model Domain

5.2.3 Assemble the [Known Values] Matrix (Lines 294-313)

Once the [Conductance Matrix] is assembled the next step is to assemble all known values to the

right-hand side of the typical matrix equation [A]*[x]=[b]. All known values (i.e. related to type 1

and 2 boundary conditions) must be moved to the right-side of the equation. Please note that in

the MATLAB code this [Known Value Matrix] is called ‘RHS’.

There are two tasks to populate the [Known Value Matrix]. The first task is to address the flow

terms which are related to the constant head boundary condition on the left side (i.e. CHL) and

right side (i.e. CHR) of the model domain. Since the cells connected to CHL and CHR are all directly

to the right or left of CHL/CHR the a-coefficient is used to calculate the fluxes between these

cells. Therefore, we apply the following equations to calculate the flux terms which appear in the

[Known Value Matrix] for CHL and CHR, respectively (note: these equations are repeated and

applied to the ‘RHS’ matrix once for each row):

𝐾𝑛𝑜𝑤𝑛 𝐹𝑙𝑢𝑥 𝑓𝑟𝑜𝑚 𝐶𝐻𝐿 = 𝑎 ∗ 𝐶𝐻𝐿 (19)

𝐾𝑛𝑜𝑤𝑛 𝐹𝑙𝑢𝑥 𝑓𝑟𝑜𝑚 𝐶𝐻𝑅 = 𝑎 ∗ 𝐶𝐻𝑅 (20)

The next task to populate the [Known Value Matrix] is to calculate the flux due to the recharge

(i.e. RCH) boundary condition. This flux is calculated using equation 21 below, and is applied to

ALL entries in the [Known Value Matrix] (since this flux applies to ALL interior cells):

𝑅𝑒𝑐ℎ𝑎𝑟𝑔𝑒 𝐹𝑙𝑢𝑥 = 𝑅𝐶𝐻 ∗ 0.001 ∗ 𝛥𝑥 ∗ 𝛥𝑦 (19)

The final resulting [Known Value Matrix] would look similar to Figure 9, an example based on a

5x5 model domain. The first five values in the matrix correspond to the CHL boundary, the final

five entries would correspond to the CHR boundary, and a small flux (0.004 m3 in this case) is

applied to all entries:

Figure 9: Example [Conductance Matrix] for a 5x5 Model Do main

5.2.4 Solve Using the Gauss-Seidel Method (Lines 315-352)

Once the [Conductance Matrix] and [Known Value Matrix] are assembled it is a simple matter to

apply the Gauss-Seidel solution method to determine the final solution. Fortunately, the

conductance matrix is always diagonally dominant (based on the fast that the d-coefficient is

always greater than a- or b-coefficients), which means that the Gauss-Seidel solution method will

always converge. Before running the Gauss-Seidel method a few small tasks are performed to

prepare. First a matrix of initial values equal to (CHR+CHL)/2 is generated (‘initialHead’). Another

matrix (‘heads’) is also created to store the estimated head values for the current iteration. Yet

another matrix (‘Error’) is generated to store the relative approximate error for each cell in the

model domain. Finally, a conditional for loop is executed to run the Gauss-Seidel method. The for

loop is run continuously until the maximum error value throughout the entire model domain is

less than the error threshold applied by the user OR the maximum number of iterations is met.

5.2.5 Organize and Display the Results (Lines 354-413)

Finally, once the Gauss-Seidel solution method has run its course, the final step in the code is

simply to organize the results and to display them in an easily interpreted format. At this stage

the results are contained in a matrix which contains a single row, and the head values for the

cells containing CHL and CHR are not included, even though these should be included in the final

plot.

Therefore, the first few lines in this section of the code simply create a new matrix (‘finalHeads’)

with the correct dimensionality to contain the final results. The values from CHL, CHR and the

‘heads’ matrix are then transcribed into the ‘finalHeads’ matrix, which is then reshaped into a

matrix with a number of rows and columns equivalent to the number of rows and columns within

the model domain.

In order to display the results in a mesh diagram, additional variables for the X and Y coordinate

are also required. Therefore, a matrix of X and Y coordinates are created. All these results are

used to display the final groundwater table/elevations using the mesh command.

The last lines in the code (lines 397-410) calculate the cell-specific results as described in section

5.1.

6.0 Assumptions, Limitations and Sources of Error
Please note that several assumptions and limitations are implicit in the functioning of this 2-

dimensional groundwater modeling application. This section reviews some of these assumptions

and limitations and provides general guidelines to ensure that the model is used appropriately.

This section also discusses potential sources of error in the code and methods which may be used

to reduce these errors.

6.1 Assumptions and Limitations of the MATLAB Code
Many of the limitations of the MATLAB code are implicitly tied to the assumptions which were

made as the code was developed, and these can be easily uncovered by comparing the

functionality of the MATLAB code to any of the readily available modeling codes which are

available throughout the world (i.e. open-source codes and/or commercial codes). For example,

the MATLAB code assumes that the solution is steady state, but no groundwater system is truly

at equilibrium. Commercial groundwater modeling applications overcome this hurdle by

supporting transient solutions based on time-varying inputs. This, unfortunately, is beyond the

capabilities of this simple MATLAB application.

The MATLAB code also assumes that a real-world aquifer can be properly modeled based on the

conceptual model which is implicit to the code (see Figure 1). In most cases the conceptual model

would not be sufficiently like the real-world aquifer, which of course imposes a source of error

on the eventual solution compared to real-world observations. With commercial applications this

source of error is overcome by providing the user with enough flexibility in recreating the real-

world environment, for example by allowing the user to define an irregularly shaped model

domain and providing the user with control over the types and locations of boundary conditions.

However, even in a real-world setting which is very similar to the conceptual model there are

assumptions in the solution which introduce errors. For example, the current code assumes that

the aquifer is homogeneous, although in the real-world there are always variations in hydraulic

conductivities at different scales. Even if the MATLAB code did provide the ability to assign

different hydraulic conductivity values to different cells, the assumption is that the parameters

are at least continuous throughout the volume of a given cell – an assumption which is not strictly

true. The MATLAB code also assumes that flow only occurs in the directions of the principle axes,

although this is also false (there is no ‘grid’ in the real world). The MATLAB code also assumes

that gradients in hydraulic potential in one direction only drive groundwater flow in that

direction. However, in the real world it is possible (and common) for hydraulic gradients in the X-

direction to drive ‘cross-flow’ in the Y-direction. These and many other assumptions make the

code less reliable at modeling real-world groundwater flow.

Fortunately, with respect to testing the code for accuracy (see section 7.2) the MATLAB code and

application used for testing (Visual MODFLOW Flex) are subject to the same assumptions and

limitations, and therefore should present similar solutions. The assumptions and limitations

inherent in the MATLAB code are more important when comparing the solution from MATLAB

against real-world observational data.

6.2 Sources of Error in the Numerical Solution
There is only one major source of error related to the Gauss-Seidel solution method, specifically

round-off errors. Another concern is that solution method is stepwise in the sense that a new

estimate is calculated one node at a time, and the new estimate is then used to calculate

estimates at subsequent nodes. The result is that errors are cumulative within each solution

iteration, resulting in higher relative error in the final nodes calculates by the Gauss-Seidel

method. This results in some directional bias in the relative approximate error of the solution.

See section 7.2 for more details on this directional bias.

7.0 Benchmark Testing
The MATLAB code was tested against two criteria: the ‘run’ time (i.e. the elapsed time between

clicking the ‘Run’ button and the solution being displayed) and the relative approximate accuracy

compared to a commercial groundwater modeling code called Visual MODFLOW Flex. Both types

of test were run using the same model composition (i.e. size, boundary condition values, etc.).

The composition/parameters of the testing model are shown in Table 1:

Xmin 0 Kx 1

Xmax 10 Ky 1

Ymin 0 Neff 0.2

Ymax 10 RCH 10

Rows/dY Variable CHL 10

Columns/dX Variable CHR 5

Table 1: Composition of Model Used for Benchmark Testing

7.1 Testing Run Times
To test the overall efficiency of the MATLAB code the model described in Table 1 was run several

times with different levels of grid refinement and with different levels of accuracy (using the Error

Threshold variable). The run time was tabulated using the stopwatch functionality in MATLAB,

and the total number of iterations required for the Gauss-Seidel method to reach the solution

were also recorded. The results of the run time tests are displayed in Table 2.

 Grid Refinement

Error Threshold 5x5 grid
(25 nodes)

10x10 grid
(100 nodes)

20x20 grid
(400 nodes)

40x40 grid
(1600 nodes)

0.001 0.031 (10) 0.078 (21) 0.654 (49) 16.662 (90)

0.0001 0.042 (17) 0.090 (51) 0.948 (97) 34.532 (265)

0.00001 0.033 (24) 0.094 (88) 1.456 (195) 53.835 (444)

0.000001 0.086 (30) 0.112 (125) 2.346 (362) 84.298 (735)

0.0000001 0.043 (37) 0.122 (163) 3.201 (529) 157.556 (1439)

Table 2: Results of Run Time Testing – Run Time in Seconds (# of Iterations Required)

The results of run time testing indicate that for smaller grids with fewer nodes the model run

times are quite fast (<1 second). However, as the size of the model increases, especially above

400-500 nodes, there is a rapid increase in model run times at all accuracy levels. Of course, there

is also a general trend of increasing run times as the error threshold is decreased, but overall it

would seem that the number of nodes is the primary cause of excessive model run times.

While the model run times are quite short with smaller models, users familiar with commercial

groundwater modeling software may be discouraged by the longer model run times with larger

models. In fact, the ‘large’ model tested here is quite small by the standards of commercial

groundwater models which may have hundreds of thousands or even millions of nodes. These

models may take hours to run, but that would be expected for exceptionally large models. But a

model run time of approximately 2.5 minutes for a simple model with only 1600 nodes does not

compare favorably to commercial groundwater modeling codes.

7.2 Accuracy Testing with Visual MODFLOW Flex
Unfortunately, there is no analytical solution available for a 2-dimensional groundwater model

with the desired boundary conditions. However, the accuracy of the solution provided by the

MATLAB code can be easily compared to commercial applications with the same functionality. A

series of accuracy tests were performed by comparing the results of a model built in the MATLAB

code against an identical model built in Visual MODFLOW Flex (VMOD).

To compare the results from the two applications an identical model (described in Table 1) was

built in both applications, and the relative approximate error of each model cell was calculated

using equation 20. Finally, the average of the relative approximate errors across all cells was

calculated, and the results are presented in Table 3. Please note that the error threshold for these

tests were set to 0.001 for all model runs.

∈𝑎=
𝑅𝑒𝑠𝑢𝑙𝑡 𝑓𝑟𝑜𝑚 𝑀𝐴𝑇𝐿𝐴𝐵−𝑅𝑒𝑠𝑢𝑙𝑡 𝑓𝑟𝑜𝑚 𝑉𝑀𝑂𝐷

𝑅𝑒𝑠𝑢𝑙𝑡 𝑓𝑟𝑜𝑚 𝑉𝑀𝑂𝐷
𝑥100% (20)

Grid Refinement (RowsxColumns) Relative Approximate Error (εa)

5x5 3.67%

10x10 2.51%

20x20 2.64%

40x40 2.60%
Table 3: Relative Approximate Error of MATLAB Code Compared to Visual MODFLOW at

Various Levels of Refinement

From the results in Table 3 it is clear that the MATLAB code does result in relatively accurate

solutions, at least compared to one popular commercial application with the same functionality.

It’s somewhat unusual that the relative approximate error is in the same range at various levels

of grid refinement. However, this may be expected since both the MATLAB code and Visual

MODFLOW Flex are numerical solutions to the same governing equations, and as such they are

subject to the same sources of numerical errors.

Since the solution method is stepwise in fashion there is a directional bias inherent in the relative

approximate error of the MATLAB solution. This directional bias is an artefact of the solution

methodology, which begins by calculating a new estimated groundwater level at node 1, and

then moving to subsequent nodes. At each subsequent node the estimate from earlier cells are

used to estimate a new value in the current cell, which means that errors from previous nodes

tend to accumulate in subsequent nodes as the solution progresses. This can be resolved by

simply lowering the ‘Error Threshold’, which ensures that all nodes/cells in the model domain

will achieve a certain level of accuracy. But overall the directional bias will still be evident. This

can be illustrated by reviewing the relative approximate error on a node-by-node basis, as shown

in Figure 10 below. Figure 10 illustrates the relative approximate error for all nodes within a

10x10 model domain (with ‘Error Threshold’ of 0.001).

Figure 10: Relative Approximate Error for all Nodes in a 10x10 Grid

The Gauss-Seidel solution methodology for the MATLAB code dictates that a new estimate will

be calculated at the node in Row1/Column2 first, followed by the remaining nodes in Column2,

before moving to Row3, then Row4, etc. As a result, errors tend accumulate as the row increases

within each column (i.e. εRow10 > εRow1), and that errors tend to also accumulate with each

successive column (i.e. εColumn9 > εColumn2). It is also notable that the relative error in Row1 for each

successive column is smaller than the error in Row10 for the previous column. That’s because

the estimate for any node in Row1 depends on the estimate for the neighboring cell in Row1. In

effect as the solution transitions from one column to the next it truncates the accumulated error.

Nevertheless, each successive node in Row1 continues to accumulate the error from its previous

neighbor, resulting in an overall increase in error with each successive column.

Overall it can be said that the accuracy of the MATLAB code is reasonably low, and the application

can be used with confidence in situations where the conceptual model is valid, and the

assumptions/limitations of the MATLAB code are not violated.

8.0 Conclusion
In conclusion, the 2-dimensional groundwater modeling application designed using the MATLAB

application editor successfully estimates groundwater elevations based on the fixed conceptual

model presented in Figure 1. The solution method is based on the finite difference analysis, using

the Gauss-Seidel method to iteratively converge on a solution. There are many limitations implicit

to the solution, and there are also many assumptions which may further invalidate the results

when compared to real-world observational data. However, when compared to a commercially

available groundwater modeling code with the same implicit assumptions (i.e. same conceptual

model) and sources of error, the MATLAB code does provide a relatively accurate solution with

relative approximate error less than 5% at various levels of grid refinement.

One interesting result of the code is that it accumulates numerical errors (round off error) as the

solution progresses through the model domain from one node to the next, resulting in a

directional bias in the final estimated groundwater elevation. While this directional bias can not

be eliminated within the code as it currently exists, the overall error can be easily reduced by

specifying a lower error threshold.

References
Anderson, M. & Woessner, W. (1991). Applied groundwater modeling (pp. 381–381).

http://search.proquest.com/docview/17408058/

Frind, E.O. (2003). Fundamentals of Groundwater Modelling (Course Text). Waterloo, ON: University of

Waterloo, Department of Earth Sciences.

Harbaugh, A.W. (2005). MODFLOW-2005, the U.S. Geological Survey modular ground-water model—The

ground-water flow process: U.S. Geological Survey Techniques and Methods 6 – A16. Retrieved from:

http://pubs.er.usgs.gov/publication/tm6A16

http://pubs.er.usgs.gov/publication/tm6A16

